McMurdo LTER Publications

Export 905 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Sumner DY, Hawes I, Mackey TJ, Jungblut AD, Doran PT. Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases. Geology. 2015:G36966.1. doi:10.1130/G36966.1.
Gooseff MN, McKnight DM, Carr MH, Baeseman J. Antarctic McMurdo Dry Valley stream ecosystems as analog to fluvial systems on Mars. In: Doran PT, W. Lyons B, McKnight DM Life in Antarctic Deserts and other Cold Dry Environments. Life in Antarctic Deserts and other Cold Dry Environments. Cambridge: Cambridge University Press; 2010:139 - 159. doi:10.1017/CBO9780511712258.005.
Hall BL, Denton GH, Fountain AG, Hendy CH, Henderson GM. Antarctic lakes suggest millennial reorganizations of Southern Hemisphere atmospheric and oceanic circulation. Proceedings of the National Academy of Sciences. 2010;107(50):21355 - 21359. doi:10.1073/pnas.1007250107.
Priscu JC, Fritsen CH. Antarctic lake-ice microbial consortia: Origin, distribution, and growth physiology. Antarctic Journal of the United States - 1996 Review Issue (NSF 98-28). 1998;31(2):223-224.
W. Lyons B, Laybourn-Parry J, Welch KA, Priscu JC. Antarctic lake systems and climate change. In: Bergstrom DM, Convey P, Huiskes AHL Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator. Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator. Dordrecht, The Netherlands: S; 2006. doi:LTER.
Sherwell SS, Kalra I, Li W, McKnight DM, Priscu JC, Morgan-Kiss RM. Antarctic lake phytoplankton and bacteria from near‐surface waters exhibit high sensitivity to climate‐driven disturbance. Environmental Microbiology. 2022. doi:10.1111/1462-2920.16113.
Cook G, Morgan-Kiss RM. Antarctic Chlamydomonas strains C. sp. UWO241 and ICE-MDV exhibit differential restructuring of the photosynthetic apparatus in response to iron. Department of Microbiology. 2018;M.S. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=miami1525455621778836.
Gutt J, Isla E, Xavier JC, et al. Antarctic ecosystems in transition – life between stresses and opportunities. Biological Reviews. 2021. doi:10.1111/brv.12679.
Doran PT, Priscu JC, W. Lyons B, et al. Antarctic climate cooling and terrestrial ecosystem response. Nature. 2002;415(6871):517-520. doi:10.1038/nature710.
Esposito RMM, Horn S, McKnight DM, et al. Antarctic Climate Cooling and Response of Diatoms in Glacial Meltwater Streams. Geophysical Research Letters. 2006;33:L07406. doi:10.1029/2006GL025903.
Smith DR, Leung A, Zhang X, Cvetkovska M, Morgan-Kiss RM, Hüner NPA. An Antarctic alga that can survive the extreme cold. Frontiers for Young Minds. 2022;10:740838. doi:10.3389/frym.2022.740838.
Runkel RL, McKnight DM, Andrews ED. Analysis of transient storage subject to unsteady flow: diel flow variation in an Antarctic stream. Journal of the North American Benthological Society. 1998;17(2):143-154. Available at: http://www.jstor.org/stable/1467958.
Piergallini B, W. Lyons B. Analysis of acid-leachable barium, copper, iron, lead, & zinc concentrations in Taylor Valley, Antarctic stream sediments. School of Earth Sciences. 2020;B.S. Available at: http://hdl.handle.net/1811/91772.
Spaulding SA, Wall DH. Algal investigations at varying temporal scales in an extreme environment: McMurdo Dry Valley lakes, Antarctica. 1996;Ph.D.
Pearce DA, Alekhina IA, Terauds A, et al. Aerobiology Over Antarctica – A New Initiative for Atmospheric Ecology. Frontiers in Microbiology. 2016;776796194610314927235011365134445142846479110123936574(53307413). doi:10.3389/fmicb.2016.00016.
Deuerling KM, W. Lyons B. Aeolian sediments of the McMurdo Dry Valleys, Antarctica. Geological Sciences. 2010;M.S. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=osu1290524862.
Diaz MA, Adams B, Welch KA, et al. Aeolian material transport and its role in landscape connectivity in the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research: Earth Surface. 2018;123(12):3323 - 3337. doi:10.1029/2017JF004589.
Witherow R, Bertler N, Welch KA, et al. The aeolian flux of calcium, chloride and nitrate to the McMurdo Dry Valleys landscape: Evidence from snow pit analysis. Antarctic Science. 2006;18:497-505. doi:LTER.
Šabacká M, Priscu JC, Basagic HJ, et al. Aeolian flux of biotic and abiotic material in Taylor Valley, Antarctica. Geomorphology. 2012;155-156:102 - 111. doi:10.1016/j.geomorph.2011.12.009.
Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbial and Molecular Biology Review. 2006;70(1):222-252. doi:10.1128/​MMBR.70.1.222-252.2006.
Conovitz PA. Active layer dynamics and hyporheic zone storage in three streams in the McMurdo Dy Valleys, Antarctica. 2000;M.S. doi:LTER.
Hall BL, Denton GH, Heath SL, Jackson MS, Koffman TNB. Accumulation and marine forcing of ice dynamics in the western Ross Sea during the last deglaciation. Nature Geoscience. 2015;8(8):625 - 628. doi:10.1038/ngeo2478.
Levy JS, Fountain AG, Dickson JL, et al. Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica. Scientific Reports. 2013;3. doi:10.1038/srep02269.
Carpenter S, Lundberg P, Mangel M, et al. Accelerate Synthesis in Ecology and Environmental Sciences. Bioscience. 2009;59:699-701. doi:LTER.
Kepner RL, Wharton, Jr. RA, Galchenko V. The abundance of planktonic virus-like particles in Antarctic lakes. In: Ecosystem Processes in Antarctic Ice-free Landscapes. Ecosystem Processes in Antarctic Ice-free Landscapes. Rotterdam: Balkema Press; 1997:241-250.

Pages