McMurdo LTER Publications

Export 49 results:
Author Title [ Type(Desc)] Year
Filters: First Letter Of Title is A  [Clear All Filters]
Journal Article
Hall BL, Denton GH, Fountain AG, Hendy CH, Henderson GM. Antarctic lakes suggest millennial reorganizations of Southern Hemisphere atmospheric and oceanic circulation. Proceedings of the National Academy of Sciences. 2010;107(50):21355 - 21359. doi:10.1073/pnas.1007250107.
Sumner DY, Hawes I, Mackey TJ, Jungblut AD, Doran PT. Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases. Geology. 2015:G36966.1. doi:10.1130/G36966.1.
Nielsen UN, Wall DH, Adams B, Virginia RA. Antarctic nematode communities: observed and predicted responses to climate change. Polar Biology. 2011;34(11):1701 - 1711. doi:10.1007/s00300-011-1021-2.
Adhikari BN, Tomasel CM, Li G, Wall DH, Adams B. The Antarctic Nematode Plectus murrayi: An Emerging Model to Study Multiple Stress Survival. Cold Spring Harbor Protocols. 2010;2010(11):pdb.emo142 - pdb.emo142. doi:10.1101/pdb.emo142.
Doran PT, Wharton, Jr. RA, DesMarais DJ, McKay CP. Antarctic paleolake sediments and the search for extinct life on Mars. Journal of Geophysical Research-Planets. 1998;103(E12):28481-28493. doi:10.1029/98JE01713.
Cook G, Teufel A, Kalra I, et al. The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron. Photosynthesis Research. 2019;9(2). doi:10.1007/s11120-019-00621-0.
W. Lyons B, Dailey KR, Welch KA, Deuerling KM, Welch S, McKnight DM. Antarctic streams as a potential source of iron for the Southern Ocean: Figure 1. Geology. 2015;43(11):1003 - 1006. doi:10.1130/G36989.1.
Czechowski P, Sands CJ, Adams B, et al. Antarctic Tardigrada: a first step in understanding molecular operational taxonomic units (MOTUs) and biogeography of cryptic meiofauna. Invertebrate Systematics. 2012;26(6):526. doi:10.1071/IS12034.
Gutt J, Adams B, Bracegirdle T, et al. Antarctic Thresholds - Ecosystem Resilience and Adaptation (AnT-ERA), a new SCAR-biology programme. Polarforschung. 2013;82:147-150. Available at: http://epic.awi.de/34238/1/Polarforschung_82-2_147-150.pdf.
George SF, Fierer N, Levy JS, Adams B. Antarctic water tracks: Microbial community responses to variation in soil moisture, pH, and salinity. Frontiers in Microbiology. 2021;12. doi:10.3389/fmicb.2021.616730.
Xue X, Thompson AR, Adams BJ. An Antarctic worm and its soil ecosystem: A review of an emerging research program in ecological genomics. Applied Soil Ecology. 2024;193:105110. doi:10.1016/j.apsoil.2023.105110.
Mayer A. Antarctica during the Pandemic: Scaled-back field season prioritizes infrastructure, precious climate data. BioScience. 2021;71(5):434 - 440. doi:10.1093/biosci/biab031.
Tallada S, Hall G, Barich D, Morgan-Kiss RM, Slonczewski JL. Antibiotic resistance genes and taxa analysis from mat and planktonic microbiomes of Antarctic perennial ice-covered Lake Fryxell and Lake Bonney. Antarctic Science. 2022;34(6):408 - 422. doi:10.1017/S0954102022000360.
Pletzer T, Conway JP, Cullen NJ, Eidhammer T, Katurji M. The application and modification of WRF-Hydro/Glacier to a cold-based Antarctic glacier. Hydrology and Earth System Sciences. 2024;28(3):459 - 478. doi:10.5194/hess-28-459-2024.
McKnight DM, Andrews ED, Spaulding SA, Aiken GR. Aquatic fulvic acids in algal-rich antarctic ponds. Limnology and Oceanography. 1994;39(8):1972-1979.
Magalhaes C, Stevens MI, Cary CS, et al. At Limits of Life: Multidisciplinary Insights Reveal Environmental Constraints on Biotic Diversity in Continental Antarctica. de Bello F. PLoS ONE. 2012;7(9):e44578. doi:10.1371/journal.pone.0044578.
Winslow LA, Dugan HA, Buelow HN, et al. Autonomous Year-Round Sampling and Sensing to Explore the Physical and Biological Habitability of Permanently Ice-Covered Antarctic Lakes. Marine Technology Society Journal. 2014;48(5):8 - 17. doi:10.4031/MTSJ.48.5.6.
Thesis
Conovitz PA. Active layer dynamics and hyporheic zone storage in three streams in the McMurdo Dy Valleys, Antarctica. 2000;M.S. doi:LTER.
Deuerling KM, W. Lyons B. Aeolian sediments of the McMurdo Dry Valleys, Antarctica. Geological Sciences. 2010;M.S. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=osu1290524862.
Spaulding SA, Wall DH. Algal investigations at varying temporal scales in an extreme environment: McMurdo Dry Valley lakes, Antarctica. 1996;Ph.D.
Piergallini B, W. Lyons B. Analysis of acid-leachable barium, copper, iron, lead, & zinc concentrations in Taylor Valley, Antarctic stream sediments. School of Earth Sciences. 2020;B.S. Available at: http://hdl.handle.net/1811/91772.
Cook G, Morgan-Kiss RM. Antarctic Chlamydomonas strains C. sp. UWO241 and ICE-MDV exhibit differential restructuring of the photosynthetic apparatus in response to iron. Department of Microbiology. 2018;M.S. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=miami1525455621778836.
Leslie DL, W. Lyons B. The application of stable isotopes, δ11B, δ18O, and δD, in geochemical and hydrological investigations. Geological Sciences. 2013;Ph.D. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=osu1386000037.
Langford ZL, Gooseff MN. Are the Dry Valleys getting wetter? A preliminary assessment of wetness across the McMurdo Dry Valleys landscape. Department of Civil & Environmental Engineering. 2013;M.S. Available at: https://etda.libraries.psu.edu/catalog/17364.

Pages